Итак, у нас есть прямоугольный треугольник ABH. Угол А равен 60, значит, угол В равен 30 градусов. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, то есть АН=половина АВ=4см.
Нам дано, что АД=8см, мы вычислили, что АН=4 см, следовательно, ДН тоже равна 4 см.
Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.
Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.
Подставляем в формулу:
Площадь трапеции = полусумма оснований умножить на высоту.
Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
Дан треугольник АВС, следовательно АВ=ВС=15 см, АС=18см.
R-радиус описанной окружности, r- радиус вписанной окружности.
BK - высота.
S- площадь треугольника АВС.
Р-периметр треугольника АВС.
Решение: S=(AC*BC*AB)/4R. S=1/2*P*r. S=1/2BK*AC.
Рассматриваем треугольник ВКС как прямоугольный, для решения используем теорему Пифагора:
ВС^2=BK^2+KC^2. КC=1/2AC
BK^2=BC^2-KC^2=225-81=144
BK=12 см.
S=1/2BK*AC=1/2*12*18=108 см.
R=(AC*BC*AB)/(4*S)=(15*15*18)/(4*108)=75/8 см.
r=2*S/Р=2*S/(АС+ВС+АВ)=2*108/(15+15+18)=9/2 см.