АF-высота, она образует прямоугольный треугольник АВF, уголF=90° АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы). если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5 следовательно, проверка: по теореме Пифагора: АВ^2=АF^2+FB^2 81=20,25+FB^2 FB^2=60,75 FB=7.79422 FB≠AF значит, угол В=30° А=180-30=150°(сумма смежных углов ромба =180°).
Пусть h₁ - высота параллелограмма, a - его основание, b - основание равнобедренного треугольника, h₂ - высота равнобедренного треугольника, c - его боковая сторона. Площадь параллелограмма равна произведению основания на высоту: В равнобедренном треугольника высота, проведённая к основанию, является медианой и биссектрисой. По теореме Пифагора (рассматривается треугольник, образованный высотой, а не весь равнобедренный треугольник): Тогда Площадь треугольника равна половине произведения основания на высоту: Т.к. площади треугольника и параллелограмма равны, то ответ: 2.
АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы).
если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5
следовательно,
проверка:
по теореме Пифагора:
АВ^2=АF^2+FB^2
81=20,25+FB^2
FB^2=60,75
FB=7.79422
FB≠AF
значит, угол В=30°
А=180-30=150°(сумма смежных углов ромба =180°).