Объяснение:
Третья сторона треугольника в основании равна 10 и его площадь
S= 1/2* a*b = 1/2*6*8=24см2
Площадь боковой поверхности призмы с периметром основания P равна
Sб.=P*h=24*10 = 240cм2
Sп.п = 2*Sосн + Sбок = 48 + 240= 288 см2
2)Площадь основания – это площадь прямоугольного треугольника и равна
Sосн =1/2*a*b = 1/2*6*8=24 см2
Тогда площадь боковой поверхности, равна
Sб = h*(a+b+c)= Sп-2Sосн.
Sб.= 288-2*24= 240см2
где a, b, c – длины сторон треугольника; h – высота призмы. Сначала найдем третью сторону треугольника по теореме Пифагора: Y- корень
с= Y6^2 +8^2=Y 36+64 =Y100= 10 см
Высота призмы равна:
h = Sб./ (a +b+ c)= 240/ 6+8+10 = 10 см
1) 5+4 =9 столько частей в этих 360°
Меньшая дуга 360:9*4=40°*4=160°
Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ).
Вписанный угол АСВ равен половине центрального угла.
160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ
Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен
360°:9*5:2=100°. Но обычно имеется в виду острый угол.
------------
2) 7+3=10 столько частей в двух дугах.
360°:10*3=108° содержит центральный угол КОМ ( второй рисунок)
Вписанный угол МЕК равен половине градусной меры центрального угла.
108°:2=54° - под этим углом видна вторая хорда.
(Или, если точка расположена по другую сторону хорды,
360:10*7:2=126°)