Точка М рівновіддалена від усіх сторін рівностороннього трикутника АВС, у якого довжина радіуса вписаного в нього кола дорівнює 2дм. Знайти відстань від точки М до сторін трикутника АВС, яущо її відстань до площини цього трикутника 1,5дм.
Задачу можно решить с простейшим рисунком, советую сделать его. Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М. Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.
Дано: KL=27 KN=24 MN=8 Найти: Р(KMN)=? Решение Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN. По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8 Выразим х*у: х*у=27*8=216 (1) Найдём длину биссектрисы KN: KN²=KL*KM-LN*MN По условиям задачи KL=27, MN=8, LN=x и KM=y 24²=27у-8х 576=27у-8х (2)
Решим систему уравнений: {х*у=216 {576=27у-8х Выразим значение х из первого уравнения: х=216/у Подставим его во второе уравнение (метод подстановки): 576=27у-8х 576=27у-8*216/у 576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя) 576*у=27у²-1728 27у²-1728-576у=0 27у²—576у-1728=0 D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24 у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24, 24х=216 х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56 ответ: периметр треугольника KMN равен 56.
Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.