М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
borschteeeeee
borschteeeeee
16.08.2022 14:31 •  Геометрия

JfsAq1d MD 5ktk6https://vm.tiktok.com/ZSt6XUoV/

👇
Открыть все ответы
Ответ:
joker902
joker902
16.08.2022

1)

1. E

2. F

3. B

4. E

5. A

6. D.

Теорема косинусов: cos\alpha = \frac{b}{c};\\cos\alpha = sin\beta

Теорема синусов: sin \alpha = \frac{a}{c};\\sin \alpha = cos \beta.

3)

Формула вычисления стороны, зная 2 другие, и угол между ними:

a^2 = b^2+c^2-2bc*cos\gamma

a^2 = 15^2+8^2 - 2*8*15*0.173648\\a^2 = 225+64-41.67 = a^2 = 247.33\\a = \sqrt{247.33} = a = 15.726.

Так как путь из A => B проходит через пункт C, то в этом случае, расстояние между точками A & B равна: AC+BC = 23.

Но так как мы уже нашли 3-ю недостающую сторону(AB(в 1-ой картинке)), то расстояние между точками A => B, без прохода через точку C — равна 23-15,726 = 7.242.

4)

Формула вычисления описанной окружности около равнобёдренного треугольника такова: R = \frac{a^2}{\sqrt{(2a)^2-b^2}}

R = \frac{10^2}{\sqrt{(2*10)^2-12^2}} = R = \frac{100}{\sqrt{400-144}}\\R = \sqrt{256} = 16.

Формула вычисления вписанной окружности около равнобёдренного треугольника такова: r = \frac{b}{2}\sqrt\frac{2a-b}{2a+b}\\r = 6\sqrt\frac{20-12}{20+12} = r = 6*0.5 = 3.


СОР ГЕОМЕТРИЯ 9 КЛАСС
4,7(20 оценок)
Ответ:
ivan497
ivan497
16.08.2022

6 ед.

Объяснение:

В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.

Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.

В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.

НМ = ОН - О1Н1 = 8-5 = 3 ед.

Высота боковой грани НН1 = 6 ед.

4,5(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ