М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zdavatelzno
zdavatelzno
12.05.2020 04:04 •  Геометрия

Дан куб со стороной 21
Найти: площадь, объем, диагонали

👇
Открыть все ответы
Ответ:
ира10141
ира10141
12.05.2020

На стороне AB равностороннего треугольника ABC взята точка D так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту треугольника, проведенную из вершины C.

РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных расстояний m, другое – n. Расстояния – это высоты. Находим площади треугольников:

Сюда относится картинка с умножением

Теперь их суммируем:

Сюда с сложением

В левой части полная площадь ABC, правую можно периписать так:

Сюда с сложением и умножением

Где h - высота из вершины C, равна сумме расстояний = 16 см

ОТВЕТ: 16 см


НАДО РЕШИТЬ НА стороне BA Равностороннего Трейугольника BAD взята точка C так, что сумма растояний о
НАДО РЕШИТЬ НА стороне BA Равностороннего Трейугольника BAD взята точка C так, что сумма растояний о
НАДО РЕШИТЬ НА стороне BA Равностороннего Трейугольника BAD взята точка C так, что сумма растояний о
НАДО РЕШИТЬ НА стороне BA Равностороннего Трейугольника BAD взята точка C так, что сумма растояний о
4,6(93 оценок)
Ответ:
Как ни странно, для решения таких задач важно максимально упростить форму записи соотношений, которые получаются из условия.
Треугольник ABC, высоты AA1; BB1; CC1; точка пересечения H;
Задано AH/HA1 = 1; BH/HB1 = 2; надо найти CH/HC1;
Теорема Ван-Обеля дает
AC1/C1B + AB1/B1C = AH/HA1 = 1;
BC1/C1A + BA1/A1C = BH/HB1 = 2;
Теорема Чевы (без учета ориентированности, что тут не важно) дает
(AC1/C1B)*(BA1/A1C)*(CB1/B1A) = 1;
А найти надо CH/HC1 = CB1/B1A + CA1/A1B;
Вот теперь надо что-то делать, чтобы можно было с этим работать.
Пусть AC1/C1B = a; BA1/A1C = b; CB1/B1A = c;
тогда вся эта абракадабра переписывается так
a + 1/c = 1;
1/a + b = 2;
abc = 1;
и надо найти c + 1/b;
теперь видно, что эту систему очень легко решить.
из второго уравнения 1 + ab = 2a; => 1/c = 2a - 1; тогда из  первого получается 3a - 1 = 1; a =2/3; далее b = 1/2; c = 3;
c + 1/b = 5 = CH/HC1;

Вы проверьте, мало ли, я тут "в пол глаза" решаю, мог и что-то не так сделать.
4,7(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ