Дано: АВ=СД=8см, ВС=6см, АД=16см, угол В = 45градусов. Решение: S=(a+b)делим на 2 и всё это умножаем на h-высоту. из точки В к основанию АД проводим высоту, обозначим её точкой К, высота будет перпендикулярна СД. Образуется треугольник АВК, в котором угол при к равен 90 градусов. значит, в треугольнике АВК: АВ=8см, АК=5см ( т.к. большее основание равно 16см, меньше равно 6, следовательно 16-6=10-сумма длин двух катетов при большем основании, 10:2=5-длина одного катета в треугольнике при большем основании). Чтобы найти площадь трапеции, нам надо знать длину высоты ВК(или h) (по-другому это будет неизвестный катет в прямоугольном треугольнике)., а чтобы узнать длину высоты,используем теорему Пифагора c^2=a^2+b^2. из этой теоремы находим неизвестный катет---> a^2=c^2-b^2. подставляем теперь числа к этой формуле: а^2=8^2 - 5^2 a^2=64-25 a^2=39 a=квадратный корень из 39-это высота h теперь найдём площадь трапеции: S=(6+16)/2 и умножаем на квадратный корень из 39 = 11 умноженное на корень из 39 ответ:S=11 умноженное на корень из 39
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
То есть радиус вписанной окружности равен отношению площади треугольника к его полупериметру.