М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruzanayvazyan
ruzanayvazyan
17.09.2020 12:05 •  Геометрия

Знайдіть сторони рівнобедоеного трикутника, якщо його периметр дорівнює 28 см, а бічна сторона на 2 см менша від основи

👇
Ответ:
bolshikov
bolshikov
17.09.2020

Відповідь: 8\frac{2}{3}см, 8\frac{2}{3}см, 10\frac{2}{3}см

Пояснення:

Нехай бічна сторона х, тоді  основа трикутника- (х +2). Периметр трикутника- то сума усіх його сторін.

х+2+х+х=28

3х=28-2

3х=26

x=\frac{26}{3} = 8\frac{2}{3} (см)- бічні сторони

х+2=8\frac{2}{3} +2=10\frac{2}{3} (см)- основа трикутника

4,4(39 оценок)
Открыть все ответы
Ответ:
Vladislava256
Vladislava256
17.09.2020

Відповідь:

3 см

Пояснення:

Відомо, що коло, вписане в трикутник, точками дотику до сторін відділяє рівні відрізки зі сторони кожної вершини.

Також відомо, що висоти - радіуси, проведені із центра такого кола в прямокутному трикутнику до катетів утворюють з відрізками від точок дотику до вершини прямого кута квадрат зі стороною, рівною радіусу вписаного кола.

Згідно з умовою, позначимо AF як 2x, FB як 3x, тоді

r=9-2x

За теоремою Піфагора складемо рівняння:

9²+ (9-2х+3х)²=(2х+3х)²

81+(9+х)²=25х²

81+81+18х+х²-25х²=0

24х²-18х-162=0

4х²-3х-27=0

Дискрімінант: Д=9+4*4*27=441=21²

х₁=(3+21)/8=3 см

х₂=(3-21)/8=-2.25 см (не підходить).

Тоді r=9-2·3=3 см


Коло вписане в прямокутний трикутник abc дотикається до гіпотенузи ab у точці f. знайдіть радіус впи
4,6(20 оценок)
Ответ:
ramazan2001xxx
ramazan2001xxx
17.09.2020

Через  вершину конуса с основанием радиуса R проведена плоскость, которая пересекает его основание по хорде, которую видно из центра основания под углом α, а из вершины – под углом β. Найти площадь сечения. 

--------

Данное сечение конуса - равнобедренный треугольник. Пусть сторона этого треугольника равна а. 

Тогда его площадь можно выразить S=a²•sinβ/2.

1) Примем длину хорды равной х. Тогда  из треугольника в основании, образованного хордой и двумя радиусами, квадрат её длины можно выразить по т.косинусов. 

х²=2R²-2R²•cosα=2R²(1-cosα)

2) Выразим квадрат длины хорды по т.косинусов из треугольника в сечении:

х²=2а²-2а²•cosβ=2а²(1-cosβ)

3) Приравняем найденные значения х² 

2R²(1-cosα)=2а²(1•cosβ)

Выразим а² из этого уравнения:

а²=R²(1-cosα):(1-cosβ)

Отсюда

S сечения=[R²(1-cosα):(1-cosβ)]•sinβ:2


Через вершину конуса з основою радіуса r проведено площину, що перетинає його основу по хорді, яку в
4,8(57 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ