1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
Возьмем равносторонний треугольник ∆АВС и точку внутри этого треугольника О.
Соединим эту точку с вершинами треугольника. Таким образом мы разделили данный нам ∆ АВС на 3 треугольника: ∆АОВ, ∆АОС и ∆ВОС. То есть площадь данного нам ∆АВС равна сумме площадей ∆АОВ, ∆АОС и ∆ВОС.
Но Sавс = 1/2АС*Н (где Н - высота нашго треугольника)
Sаов =1/2АВ*h1 (где h1 - высота ∆АОВ или ничто иное как расстояние от точки О внутри нашего треугольника до стороны АВ)
Sаос = 1/2АС*h2 (где h2 - это расстояние от О до прямой АС)
Sвос =1/2 ВС*h3 (где h3 - это расстояние от О до прямой ВС)
Но АВ=ВС=АС по определению.
Тогда сумма площадей трех треугольников равна 1/2АВ*h1+1/2АС*h2+1/2 ВС*h3 или 1/2АС*h1+1/2АС*h2+1/2АС*h3 = 1/2АС*(h1+h2+h3) и эта сумма равна площади нашего треугольника АВС Sавс = 1/2АС*H.
Значит Н = h1+h2+h3 что и требовалось доказать.
Если точка лежит на любой из сторон - это частный случай, когда соединив эту точку с вершинами данного нам треугольника получим два треугольника, а не три. Остальные рассуждения те же.