В треугольник вписан ромб так, что один угол них общей, а противолежащая вершина ромба делит сторону треугольника на отрезки, отношение которых равно 2:3. Найти стороны треугольника, между которыми лежит общий угол треугольника и ромба, если диагонали равны m и n.
Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2.
tg (α/2) = (m√2/2) / H
а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2
б) Боковое ребро b = (m√2/2) / sin (α/2)
в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2
L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2)
Угол между боковой гранью и плоскостью основания
sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α))
г) Двугранный угол при боковом ребре - это не знаю.