оскольку ромб является одним из видов параллелограмма, то диагонали ромба в точке пересечения делятся пополам.
Кроме этого, диагонали ромба обладают другими свойствами.
Теорема.
(Свойство диагоналей ромба)
Диагонали ромба пересекаются под прямым углом.
Диагонали ромба являются биссектрисами его углов.
Дано:
ABCD — ромб,
AC и BD — диагонали.
Доказать:
AC и BD — биссектрисы углов ромба.
Доказательство:
Рассмотрим треугольник ABC.
AC=BC (по определению ромба).
Следовательно, треугольник ABC — равнобедренный с основанием AC (поопределению равнобедренного треугольника).
Так как диагонали ромба в точке пересечения делятся пополам, то AO=OC.
Значит, BO — медиана треугольника ABC (по определению медианы).
Следовательно, BO — высота и биссектриса треугольника ABC (по свойству равнобедренного треугольника).
То есть,
BD — биссектриса углов ABC (и ADC).
Из треугольника ABD аналогично доказывается, что AC — биссектриса углов BAD и BCD.
Что и требовалось доказать.
Продолжим прямые АМ и ВМ до второго их пересечения с окружностью в точках К и Р соответственно.
Так как ∠АМС=∠BМД по условию, ∠АМС=∠ДМК и ∠СОР=∠ВОД
как вертикальные, то ∠АОС=∠СОР и ∠ВОД=∠ДОК.
Диаметр СД делит окружность на две равные полуокружности, в которых есть две пары равных дуг. ∩АС=∩СР и ∩ВД=∩ДК, значит ∩АВ=∩КР.
Если точка пересечения двух секущих к окружности находится внутри окружности, то угол между секущими равен полусумме дуг, которые они высекают.
АК и ВР - секущие, М - точка их пересечения. ∠АМВ=(∩АВ+∩КР)/2=2·∩АВ/2=∩АВ.
∩АВ=∠АОВ ⇒ ∠АОВ=∠АМВ.
Доказано.