)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник.подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но:а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
Объем такого параллелепипеда равен произведению его трех измерений. одно из этих измерений равно 11см. пусть оставшиеся измерения равны x и y. тогда периметр параллелепипеда равен 4*x+4*y+4*11 =96см. или x+y=13 см. (1) х=13-y (2). площадь полной поверхности параллелепипеда: s=2*(11*x)+2*(11*y)+2*x*y=370 см². или 11*x+11*y+x*y=185 см². или 11(x+y)+x*y=185 см². подставим значение (1): 11*13+x*y=185 => x*y=42. подставим значение из (2): y²-13y+42=0. решаем это квадратное уравнение: y1=(13+√(169-168)/2 = 7см. => x1=6см y2=(13-1)/2=6см. => x2 =6см. тогда объем параллелепипеда равен 6*7*11=462см³. ответ: v=462см³.