Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
ΔАВС- ранобедренный, значит АМ является и медианой и высотой, следовательно является и серединным перпендикуляром к ВС. Известно, что центр описанной окружности — точка пересечения серединных перпендикуляров.
Значит центр окружности (на рисунке точка О) лежит на высоте АМ.
АМ=25 см, ОА=ОС=17 см ОМ=8 см
Ну и далее, собственно, вычисления, всё по т. Пифагора:
И, если не трудно, не забудь нажать "Лучшее решение", ОК?!.. ;))