Назовем этот треугольник АВС. Он равнобедренный, так что АВ = ВС.
Формула площади треугольника:
S = ah/2, при h — высота треугольника, а — сторона, на которую эта высота опускается.
В данном случае, нам неизвестна высота. Проведём ее и назовем ВМ.
Как мы знаем, высота в равнобедренном треугольнике также является медианой и биссектрисой. Следовательно, треугольник АВС = треугольнику МВС. Т.к. это высота, то она образует у основания 2 прямых угла, равных 90°, следовательно, мы получаем два прямоугольных треугольника. Медиана делит сторону, на которую опускается, на две равные части, значит АМ = МС = 42:2 = 21.
Рассмотрим треугольник АВМ. ВМ и АМ - катеты, АВ - гипотенуза. Нам нужен катет ВМ. По теореме Пифагора:
ВМ = √(АВ² - АМ²) = √(35² - 21²) = √(1225 - 441) = √784 = 28 - это у нас долгожданная высота. Теперь с уверенностью вставляем данные в формулу:
Трапеція АВСД, АВ=СД=26, АД=42, ВС=22, АС-діагональ=ВД, АС*ВД=ВС*АД+АВ*СД, АС в квадраті=ВС*АД+АВ в квадраті=22*42+676=1600С=40=ВД, АС розбиває трапецію на два трикутникка, радіус описаного кола трапецію=радіусу описаного кола біля одного з трикутників (беремо трикутник АСД, можеш потім перевірити для трикутника АВС), площа АВД=корінь ((р-а)*(р-б)*(р-с)), де р -напівмериметр трикутника АВД=(АС+СД+АД)/2=(40+26+42)/2=54, а, б, с -сторони, площаАВД=корінь(54*14*28*12)=504, радіус описаного кола=(АС*СД*АД) / (4*площаАВД)=(40*26*42)/(4*504)= 21,67
S=588
Объяснение:
Назовем этот треугольник АВС. Он равнобедренный, так что АВ = ВС.
Формула площади треугольника:
S = ah/2, при h — высота треугольника, а — сторона, на которую эта высота опускается.
В данном случае, нам неизвестна высота. Проведём ее и назовем ВМ.
Как мы знаем, высота в равнобедренном треугольнике также является медианой и биссектрисой. Следовательно, треугольник АВС = треугольнику МВС. Т.к. это высота, то она образует у основания 2 прямых угла, равных 90°, следовательно, мы получаем два прямоугольных треугольника. Медиана делит сторону, на которую опускается, на две равные части, значит АМ = МС = 42:2 = 21.
Рассмотрим треугольник АВМ. ВМ и АМ - катеты, АВ - гипотенуза. Нам нужен катет ВМ. По теореме Пифагора:
ВМ = √(АВ² - АМ²) = √(35² - 21²) = √(1225 - 441) = √784 = 28 - это у нас долгожданная высота. Теперь с уверенностью вставляем данные в формулу:
S = (42 × 28)/2 = 1176/2 = 588