Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Трапецию обозначим АВСД, АД//ВС. Из вершины С опустим высоту СМ, а из вершины В опустим высоту ВК. Тогда КМ=ВС=5, АК=МД=(13-5)/2=4, а АМ=АД-МД=13-4=9. По условию АС перпендикулярно СД, значит треугольник АСД прямоугольный и угол АСД=90.Из прямого угла опущена высота СМ. По свойству высоты, опущенной из прямого угла, её квадрат равен произведению отрезков гипотенузы, на которые эту гипотенузу делит основание высоты.То есть СМ^2=AM*MD, CM^2=9*4=36, CM=6. Из треугольника СМД по теореме Пифагора найдем СД. СД^2=CM^2+MД^2=36+16=52, CД=√52.
x = 6√5
y = 12
Объяснение на фото: