Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки, на которые высота из прямого угла делит гипотенузу. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Отсюда h² =12*3=36 h=6 По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет. Меньший катет равен 3√5, больший - 6√5 Проверка: Квадрат гипотенузы равен (3√5)²+ (6√5)²=225 Гипотенуза равна √225=15, что соответствует условию задачи.
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Отсюда h² =12*3=36
h=6
По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет.
Меньший катет равен 3√5,
больший - 6√5
Проверка:
Квадрат гипотенузы равен (3√5)²+ (6√5)²=225
Гипотенуза равна √225=15, что соответствует условию задачи.