Бічні грані правильної шестикутної піраміди нахилені до основи під кутом 30°. Радіус кола, описаного навколо основи 5 см. Знайти площу бічної поверхні. А) 50 см2 Б) 75 см2 В) 100 см2 В) 120 см2
Дано: Правильна шестикутна піраміда, R = 5 см, α = 30°(α - бічні грані правильної шестикутної піраміди нахилені до основи під кутом α)
Знайти:
S - ?(площу бічної поверхні)
Розв'язання: Розглянемо правильний шестикутник ABCDEF. Проведемо відрізки OD і OE і розглянемо трикутник Δ DOE, який буде рівнобедренним тому, що OD = OE (OD = OE = 5см за умовою), як радіуси описаного кола.Позначимо середину відрізка DE у точці M і з вершини O проведемо відрізок OM - який буде медіаною. За умовою ∠HMO = α.За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, а так як OM⊥DE, то OM є радіусом вписаного кола.У правильного шестикутника 6 сторін, а отже шість центральних кутів, нехай центральний кут β, тоді ∠DOE = β, усі 6 центральних кутів утворють повне коло отже ∠DOE = β = = 60°.
Так як OM - бісектриса за властивістю рівнобедренного трикутника, то
∠DOM = ∠MOE = ∠DOE : 2 = 60° : 2 = 30°.OM є висотою, тоді
sin ∠MOE = ⇒ ME = OE * sin ∠MOE = 5 * 0,5 = 2,5 см.Так як за OM - медіана, то DE = 2DM = 2ME = 2 * 2,5 = 5 см.
cos ∠MOE = ⇒ MO = cos ∠MOE * OE = cos 30° * OE = =
Проведемо відрізок OH - який буде висотою за властивісью шестикутної піраміди.РозглянемоΔ MOH.
cos ∠MOH = cos α = ⇒ MH = .
За властивістю правильної піраміди усі її грані є рівними рівнобедренними трикутниками, отже Δ HDE - рівнобедренний.Проведемо відрізок HM - який є медіаною так як DM = ME, За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, отже .
1. В любой прямой призме проекция диагонали призмы на ее основание - диагональ основания. Следовательно, сечение, проходящее через диагональ призмы и её проекцию на основание - это прямоугольник. 2. Диагональное сечение призмы - прямоугольник ВВ1D1D. АА1=AD=2√3. Значит высота призмы равна 2√3. Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²). АВ=DC (противоположные стороны основания). BD=√(12+25) = BD=√37. Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111. 3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты. ВН=Saa1b1b/AA1 = 80/10=8см. СН=Scaa1c1/AA1 = 40/10=4см. По теореме косинусов найдем сторону ВС: ВС=√64+16-2*32*(-1/2) = √112 = 4√7. Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра. Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см. Sбок=(12+4√7)*10= 40(3+√7)см².
Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
S бічної поверхні =
сантиметрів квадратних
Объяснение:
Дано: Правильна шестикутна піраміда, R = 5 см, α = 30°(α - бічні грані правильної шестикутної піраміди нахилені до основи під кутом α)
Знайти:
S - ?(площу бічної поверхні)
Розв'язання: Розглянемо правильний шестикутник ABCDEF. Проведемо відрізки OD і OE і розглянемо трикутник Δ DOE, який буде рівнобедренним тому, що OD = OE (OD = OE = 5см за умовою), як радіуси описаного кола.Позначимо середину відрізка DE у точці M і з вершини O проведемо відрізок OM - який буде медіаною. За умовою ∠HMO = α.За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, а так як OM⊥DE, то OM є радіусом вписаного кола.У правильного шестикутника 6 сторін, а отже шість центральних кутів, нехай центральний кут β, тоді ∠DOE = β, усі 6 центральних кутів утворють повне коло отже ∠DOE = β =
= 60°.
Так як OM - бісектриса за властивістю рівнобедренного трикутника, то
∠DOM = ∠MOE = ∠DOE : 2 = 60° : 2 = 30°.OM є висотою, тоді
sin ∠MOE =
⇒ ME = OE * sin ∠MOE = 5 * 0,5 = 2,5 см.Так як за OM - медіана, то DE = 2DM = 2ME = 2 * 2,5 = 5 см.
cos ∠MOE =
⇒ MO = cos ∠MOE * OE = cos 30° * OE =
= 
Проведемо відрізок OH - який буде висотою за властивісью шестикутної піраміди.РозглянемоΔ MOH.
cos ∠MOH = cos α =
⇒ MH = 
.
За властивістю правильної піраміди усі її грані є рівними рівнобедренними трикутниками, отже Δ HDE - рівнобедренний.Проведемо відрізок HM - який є медіаною так як DM = ME, За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, отже
.
S бічної поверхні = 6 *
=
.