Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
1) по закону параллелограмма построим сумму векторов (обеих приложенных сил) AD−→−;
2) обозначим равные стороны через x и в треугольнике ABD применим теорему косинусов для составления уравнения:
∣∣AD−→−∣∣2=∣∣AB−→−∣∣2+∣∣AC−→−∣∣2−2⋅∣∣AB−→−∣∣⋅∣∣AC−→−∣∣⋅cos(180°−40°)542=x2+x2−2⋅x⋅x⋅cos140°2916=2x2−2x2⋅(−0,77)2916=2x2⋅(1+0,77)x=2916(1+0,77)−−−−−−−√x≈41N