М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Опооовоа
Опооовоа
19.03.2021 08:27 •  Геометрия

Дано АС = ВД, АВ=СД доказать угол в= угол С


Дано АС = ВД, АВ=СД доказать угол в= угол С ​

👇
Открыть все ответы
Ответ:

ответ: например

Объяснение:Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin. (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(. ... ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin.

4,8(74 оценок)
Ответ:
nastaklimenkofll
nastaklimenkofll
19.03.2021

ответ: теорема доказана.

Объяснение:

Пусть ΔABC - данный равнобедренный треугольник, у которого AC - основание, AB и BC - боковые стороны. Проведём из точек A и C биссектрисы AD и CE. Пусть F - точка их пересечения.  Нам нужно доказать, что AD=CE. А так как AD=AF+DF, а CE=CF+EF, то для этого достаточно доказать, что AF=CF, а DF=EF.

1. Рассмотрим ΔAFC. Так как ΔABC - равнобедренный, то ∠A=∠C, а так как AD и CE - биссектрисы этих углов, то ∠CAF=1/2*∠A, а ∠ACF=1/2*∠C. Отсюда следует, что ∠CAF=∠ACF, а это значит, что ΔAFC - равнобедренный с основанием AC. Отсюда следует, что AF=CF, и теперь остаётся доказать, что DF=EF.

2. Для этого рассмотрим треугольники AEF и CDF. Так как ∠EAF=1/2*∠A, а ∠DCF=1/2*∠C, то ∠EAF=∠DCF. А углы AFE и CFD равны как вертикальные. И так как при этом - по доказанному - AF=CF, то треугольники AEF и CDF равны по второму признаку равенства треугольников. А из равенства этих треугольников следует, что EF=DF.  Теорема доказана.  

4,4(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ