Объяснение:
1)На рисунке DC и DB касательные к окружности с центром A, ∠САВ=124°.Найти ∠CDB.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания. ∠АСD= ∠АВD=90°.
АВDС- четырехугольник. Сумма углов четырехугольника 360°.
∠CDB=360°-90°-90°-124°=56°
2)Из одной точки круга проведен диаметр и хорду, которая равна радиусу круга. Найдите угол между ними
Пусть диаметр АВ, хорда АС, О-центр окружности. Известно, что ОА=СА.
ΔОСА-равносторонний, т.к. ОА=ОС как радиусы, ОА=СА по условии.
Значит все углы равны 180°:3=60 °
Угол между хордой и диаметром 60°
АВ^2 = 0^2 + 2^2 + 6^2 = 40
BC^2 = 4^2 + 5^2 + 3 ^2 = 50
AC^2 = 4^2 + 7^2 + 3^2 = 74
Видно, что квадрат АС меньше суммы двух других квадратов.
Треугольник остроугольный
Если ты ошибся в условии и точка B имеет по z координату не 9, а 8, тогда треугольник будет прямоугольным
АВ^2 = 29
BC^2 = 45
AC^2 = 74
Если нужно будет,то могу потом скинуть подробное решение,но треугольник по твоим координатам всё равно выходит-остроугольным