ответ:
1. р = 18см.
2 ас = 30/(√3+1) м.
объяснение:
площадь треугольника равна (1/2)·a·b·sinα, где a и b - стороны треугольника, а α - угол между этими сторонами. в нашем случае
а = 3х, b = 8x, sinα = √3/2. тогда
(1/2)·24х²·(√3/2) = 6√3 => x = 1 см.
имеем две стороны треугольника: 3см и 8см.
по теореме косинусов находим третью сторону:
х = √(3²+8²- 2·3·8·cos60) = √49 = 7см.
периметр треугольника равен 3+8+7 = 18см.
2. по теореме синусов в треугольнике авс:
ас/sinβ = ab/sinc.
∠c = 180 - 60 - 45 = 75°. sin75° = sin(45+30). по формуле
sin(45+30) = sin45·cos30 + cos45·sin30 = (√6+√2)/4.
тогда ас = ав·sinβ/sinc = (30·√3/2)/((√6+√2)/4). или
ас = 60/((√6+√2) = 60/(√2(√3+1)) = 30/(√3+1) м.
57° и 33°.
Объяснение:
1) При пересечении диагоналей прямоугольника образовалось 2 пары равных углов:
2 угла - по 66 градусов,
и 2 угла по 180-66 = 114 градусов.
2) Все 4 образовавшихся треугольника являются равнобедренными, так как диагонали прямоугольника равны и в точке пересечения делятся пополам.
3) Следовательно в треугольнике, у которого угол при вершине равен 66°, углы при основании равны:
(180 - 66) : 2 = 114 : 2 = 57° - это первый угол, который диагональ образует со стороной прямоугольника.
4) Находим второй угол. Для этого от 90° (так как у прямоугольника углы прямые) отнимаем 57°:
90 - 57 = 33°.
ПРОВЕРИМ полученные значения по другому треугольнику, у которого угол при вершине равен 114°.
Углы при основании:
(180 - 114): 2 = 66 : 2 = 33°
Вторые углы:
90 - 33 = 57°.
Получили те же самые значения:
57° - больший угол;
33° - меньший угол.
ответ: 57° и 33°.
Радиус окружности описанной вокруг правильного шестиугольника равен стороне этого шестиугольника.
R=2 см.
Сторона правильного четырехугольника (квадрата) описанного вокруг окружности равна её диаметру.
а=2*2=4 см
Объяснение: