очень Я не понимаю геометрию( Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найти NK, если AC = 111, MN = 37, BN = 30
Ориентируйся по рисунку. так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120. треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120.
треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70