рассмотрим треугольник АОС, он - равнобедренный ( это следует из 1)
треугольник ДОВ, так же равнобедренный ( из 1)
между пересечениями этих линий у нас образовались равные углы: угол АОС= углу ДОВ ( они вертикальные) (2), и также угол СОД=углу СОВ (они тоже вертикальные) (3)
=> треугольник АОС = треугольнику ДОБ (по 1ому признаку: если две стороны одного треугольника и угол между ними равны двум сторонам и углу между ними соответственно, то такие треугольники равны) следовательно АС=ВД, треугольник АОД=СОВ (по 1ому признаку)следовательно АД=СВ
в итоге имеем прямоугольник (четырехугольник у которого две стороны попарно равны - прямоугольник) следовательно Ас параллельно ДВ ( по признаку прямоугольника) что и требовалось доказать
Есть у высоты равнобедренной трапеции, опущенной из тупого угла, свойство: она делит большее основание на две части, меньшая из которых равна полуразности оснований, большая - их полусумме. Откуда оно появилось - легко понять из рисунка. Опустив из В высоту ВН на АД, получим АН=(АД-ВС):2 =(16-4):2=6 Треугольник АВН - прямоугольный. Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5. Здесь коэффициент этого отношение k=10:5=2 ВН=4*2=8 см Но можно ВН найти по т. Пифагора - результат будет тем же. ВН=√(АВ²-АН²)=√(100-36)=8 см
из дано следует, что АО=СО=ВО=DО (1)
рассмотрим треугольник АОС, он - равнобедренный ( это следует из 1)
треугольник ДОВ, так же равнобедренный ( из 1)
между пересечениями этих линий у нас образовались равные углы: угол АОС= углу ДОВ ( они вертикальные) (2), и также угол СОД=углу СОВ (они тоже вертикальные) (3)
=> треугольник АОС = треугольнику ДОБ (по 1ому признаку: если две стороны одного треугольника и угол между ними равны двум сторонам и углу между ними соответственно, то такие треугольники равны) следовательно АС=ВД, треугольник АОД=СОВ (по 1ому признаку)следовательно АД=СВ
в итоге имеем прямоугольник (четырехугольник у которого две стороны попарно равны - прямоугольник) следовательно Ас параллельно ДВ ( по признаку прямоугольника) что и требовалось доказать
удач