Заметим, что АВ = ВС = СА = А1В1 = А1С1 = В1С1 = r√3 (сторона правильного треугольника с заданым радиусом описанной окружности). Также AA1 = BB1 = CC1 = 2r. а) Р(АВС1) = АВ + ВС1 + С1А = АВ + √(ВС² + СС1²) + √(АС² + СС1²) = r√3 + 2r√7 = 50, отсюда находим r и высоту, равную 2r. б) Расстояние х от точки С1 до прямой АВ можно найти так: х = √(СС1² + СХ²) = 2,5r = 30, отсюда находим r и высоту, равную 2r. (Х - середина АВ). в) Возьмем треугольник из пункта а). В треугольнике АВС1 высота из точки В равна 5r√(3/28) = 20, отсюда r и 2r.
Боковое ребро наклонной призмы равно 14 см и составляет с плоскостью основания угол 30º. Нужно найти высоту призмы.
-------------
Высота призмы - это перпендикуляр, опущенный из любой точки одного основания на плоскость другого основания.
Т.к. основания лежат в параллельных плоскостях, высота призмы равна расстоянию между плоскостями, содержащими её основания.
Обозначим вершины призмы ABCDA1B1C1D1 (см.рисунок в приложении)
Опустим из вершины А1 перпендикуляр А1Н на плоскость основания.
А1Н ⊥АН
∆ АА1Н - прямоугольный, его катет- высота призмы А1Н - противолежит углу 30º и равен половине гипотенузы АА1.
А1Н=14:2=7 см
Иначе: А1Н=АА1•sin 30º=14•1/2=7см
–––––––––
Примечание:
Высота призмы не обязательно совпадает с высотой боковой грани. Она совпадает с ней, только если призма прямая. В данном случае призма - наклонная.