Пусть ΔABC - данный равнобедренный треугольник, у которого AC - основание, AB и BC - боковые стороны. Проведём из точек A и C биссектрисы AD и CE. Пусть F - точка их пересечения. Нам нужно доказать, что AD=CE. А так как AD=AF+DF, а CE=CF+EF, то для этого достаточно доказать, что AF=CF, а DF=EF.
1. Рассмотрим ΔAFC. Так как ΔABC - равнобедренный, то ∠A=∠C, а так как AD и CE - биссектрисы этих углов, то ∠CAF=1/2*∠A, а ∠ACF=1/2*∠C. Отсюда следует, что ∠CAF=∠ACF, а это значит, что ΔAFC - равнобедренный с основанием AC. Отсюда следует, что AF=CF, и теперь остаётся доказать, что DF=EF.
2. Для этого рассмотрим треугольники AEF и CDF. Так как ∠EAF=1/2*∠A, а ∠DCF=1/2*∠C, то ∠EAF=∠DCF. А углы AFE и CFD равны как вертикальные. И так как при этом - по доказанному - AF=CF, то треугольники AEF и CDF равны по второму признаку равенства треугольников. А из равенства этих треугольников следует, что EF=DF. Теорема доказана.
Сегодня астрономы и физики единодушны во мнении, что Вселенная образовалась после Большого Взрыва. Миллиарды лет назад гигантский огненный шар разлетелся на куски в космическом пространстве. Это вызвало гигантский выброс материи, частички которой обладали колоссальной энергией. Венера, Земля обладают скальной поверхностью. А Сатурн и Юпитер остаются газовыми великанами из-за наибольшей удаленности. Кстати, они защищают другие планеты от метеоритов, отталкивая их от своих орбит. Формируясь, Земля усиливала притягивать космические частицы (камни, астероиды, метеориты, пыль). Падая на поверхность, они проникали постепенно в недра (действовали центробежные силы), полностью отдавая собственную энергию. Планета уплотнялась. Химические реакции послужили предпосылками образования первых форм жизни – одноклеточных. А проще говоря Земля возникла из сгустка космической пыли (туманности) под влиянием солнечной энергии.
ответ: теорема доказана.
Объяснение:
Пусть ΔABC - данный равнобедренный треугольник, у которого AC - основание, AB и BC - боковые стороны. Проведём из точек A и C биссектрисы AD и CE. Пусть F - точка их пересечения. Нам нужно доказать, что AD=CE. А так как AD=AF+DF, а CE=CF+EF, то для этого достаточно доказать, что AF=CF, а DF=EF.
1. Рассмотрим ΔAFC. Так как ΔABC - равнобедренный, то ∠A=∠C, а так как AD и CE - биссектрисы этих углов, то ∠CAF=1/2*∠A, а ∠ACF=1/2*∠C. Отсюда следует, что ∠CAF=∠ACF, а это значит, что ΔAFC - равнобедренный с основанием AC. Отсюда следует, что AF=CF, и теперь остаётся доказать, что DF=EF.
2. Для этого рассмотрим треугольники AEF и CDF. Так как ∠EAF=1/2*∠A, а ∠DCF=1/2*∠C, то ∠EAF=∠DCF. А углы AFE и CFD равны как вертикальные. И так как при этом - по доказанному - AF=CF, то треугольники AEF и CDF равны по второму признаку равенства треугольников. А из равенства этих треугольников следует, что EF=DF. Теорема доказана.