АВСД - ромб , О - точка пересечения диагоналей. Диагонали ромба разбивают его на 4 равных прямоугольных треугольника. Для нахождения второй диагонали рассмотрим ΔАОВ(угол О=90). Пусть по условию АС=32, тогда АО=32:2=16(см)
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону Р=4а 4а=80 а=80:4=20 По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО² ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ ВД=2ВО=24 Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
Пусть тр-к АВС, угол А - прямой, гипотенуза ВС=50мм. Ну, во-первых, найдем длину обоих катетов. По Пифагору ВС² = АВ²+АС² или 50² = (4Х)²+(3Х)², откуда Х=10мм. Значит АВ=4Х = 40мм, а АС=3Х = 30мм. Теперь вспомним, что в прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному. То есть имеем подобные треугольники: АВС, КВА и КАС, где точка К - точка пересечения высоты с гипотенузой. Из подобия имеем:АВ/КВ = ВС/ВА. Подставляем значения: 40/КВ = 50/40, откуда КВ = 32мм. А КС тогда равна 18мм Итак, отрезки, на которые гипотенуза делится высотой, проведенной из вершины прямого угла равны 32мм и 18мм.
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону
Р=4а
4а=80
а=80:4=20
По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО²
ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ
ВД=2ВО=24
Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
r=d1·d2/4а r=32·24/4·20=768/80=9,6
ответ :9,6 см