Пусть А и С Основания перпендикуляров опущенных из точки М на стороны данного угла с вершиной О,Точка В Основание перепендикуляра опущенного из точки М на луч,проходящий между сторонами угла АОС причём АОВ = 30градус и СОВ =40градус.Из точек А В С отрезок ОМ виден под прямым углом значит эти точки лежат на окружности с диаметром ОМ Вписанные в эту окружность углы АСВ и АОВ опираются на одну и ту же дугу поэтому АСВ = АОВ = 30градус.Анологично ВАС=СОВ =40градус Следовательно АВС = 180градус - 30градус - 40=110
По условиям задачи дано AB = CD, BC = AD. Чтобы доказать равенство треугольника ABC и треугольника ACD, нужно выделить признак равенства треугольников по трем сторонам. Две стороны у нас равны, а третья - AC - общая, это подходит под формулировку третьего признака равенства треугольников. Признак равенства треугольника звучит так: если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. AB = CD, BC = AD, AC - общая => треугольник ABC равен треугольнику ACD, что и требовалось доказать.
30,40,110 градусов
Пусть А и С Основания перпендикуляров опущенных из точки М на стороны данного угла с вершиной О,Точка В Основание перепендикуляра опущенного из точки М на луч,проходящий между сторонами угла АОС причём АОВ = 30градус и СОВ =40градус.Из точек А В С отрезок ОМ виден под прямым углом значит эти точки лежат на окружности с диаметром ОМ Вписанные в эту окружность углы АСВ и АОВ опираются на одну и ту же дугу поэтому АСВ = АОВ = 30градус.Анологично ВАС=СОВ =40градус Следовательно АВС = 180градус - 30градус - 40=110