известно, что треугольник ABC = треугольнику XYZ = треугольнику MNK. AB = 3 см, YZ = 4 см, MK = 5 см, угол с = 50 градусов, угол Y = 60 градусов, угол M = 70 градусов. Найди неизвестные стороны и углы всех треугольников.
Обозначим ВС=х, АД=2х, проведем высоту СК,обозначим Н, СК перпендикулярна АД. S=(х+2х)·Н/2 - площадь трапеции, по условию она равна 30. Значит х·Н=20. Это очень нужное в дальнейшем значение.
S (Δ APД) = 1/2·АД·H/2 (точка P - середина АВ) S( Δ APД) = 1/2 х·Н=10 ( я обращала внимание, что х·Н=20) Проведем высоту RМ паралелльно СК. Из подобия треугольников СКД и RМД RM=2H/3 S( Δ ARД) = 1/2·2х·2Н/3= 2х·Н/3= 40/3 Площадь треугольника APД состоит из площадей треугольников APQ и AQД. В сумме дает 10 Площадь треугольника ARД состоит из площадей треугольников QPД и AQД, сумме 40/3. Запишем это в виде равенств и вычтем из второй строки первую Получим S ( ΔQPД) = S (Δ APQ) + 10/3 Обозначим S ( Δ APД) = s Выразим площади всех треугольников через s S ( Δ ABQ) = s ( у треугольников равны основания АР=РВ и высота общая) S ( Δ AQД) = 10 - s S (Δ QRД) = s + 10/3 ( см. выше) S( Δ BCR) = 1/2 ·ВС· Н/3 ( высота из точки R на сторону ВС, в силу условия ДR:RC=2:1) = 1/6· х·Н= 20/6=10/3 S (Δ ABR) = S ( всей трапеции) - S( ΔARД) - S (Δ BCR)= 30 - 40/3 - 10/3=40/3 Получили, что площади треугольков ABR и ARД равны. Поскольку основание AR - общее, значит и высоты, проведенные из точек В и Д на сторону AR равны. Значит и площади треугольников ABQ и AQД тоже равны. У них основание общее AQ. Высоты равны. Поэтому s+s=10-s s=10|3 ответ Площадь треугольника APQ равна 10/3
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
S=(х+2х)·Н/2 - площадь трапеции, по условию она равна 30.
Значит х·Н=20. Это очень нужное в дальнейшем значение.
S (Δ APД) = 1/2·АД·H/2 (точка P - середина АВ)
S( Δ APД) = 1/2 х·Н=10 ( я обращала внимание, что х·Н=20)
Проведем высоту RМ паралелльно СК. Из подобия треугольников СКД и RМД
RM=2H/3
S( Δ ARД) = 1/2·2х·2Н/3= 2х·Н/3= 40/3
Площадь треугольника APД состоит из площадей треугольников APQ и AQД. В сумме дает 10
Площадь треугольника ARД состоит из площадей треугольников QPД и AQД, сумме 40/3.
Запишем это в виде равенств и вычтем из второй строки первую
Получим S ( ΔQPД) = S (Δ APQ) + 10/3
Обозначим S ( Δ APД) = s
Выразим площади всех треугольников через s
S ( Δ ABQ) = s ( у треугольников равны основания АР=РВ и высота общая)
S ( Δ AQД) = 10 - s
S (Δ QRД) = s + 10/3 ( см. выше)
S( Δ BCR) = 1/2 ·ВС· Н/3 ( высота из точки R на сторону ВС, в силу условия ДR:RC=2:1) = 1/6· х·Н= 20/6=10/3
S (Δ ABR) = S ( всей трапеции) - S( ΔARД) - S (Δ BCR)= 30 - 40/3 - 10/3=40/3
Получили, что площади треугольков ABR и ARД равны. Поскольку основание AR - общее, значит и высоты, проведенные из точек В и Д на сторону AR равны.
Значит и площади треугольников ABQ и AQД тоже равны. У них основание общее AQ. Высоты равны.
Поэтому s+s=10-s
s=10|3
ответ Площадь треугольника APQ равна 10/3