Объяснение:
Знайдем кут АВО.Кут ОВС=90°(як кут радіуса і дотичної).
Кут ОВС=кут АВС+кут АВО.Тому кут АВО=Кут ОВС-кут АВС=90°-70°=20°
Кут АВО=куту ВАО,як кути при основі рівнобедренного трикутника ΔАОВ.Тому кут АОВ=180°-2*кут АВО=180°-2*20°=180°-40°=140°
№2
Проведем додатково радіус ОВ.ΔАОВ- рівнобедренний,з основою ВС.Кути при основі рівні ,тому кут ВОС=180°-кутОСВ*2= 180°-60°*2=60°.
Кут ВОС є зовнішним для рівнобедренного ΔАОВ,
тому кут А+кут АВО= куту ВОС.Але кут А=кут АВО(як кути при основі).
кут А= кут ВОС:2=60°:2=30° .
Отже ΔАВС-прямокутний,де ВС-катет ,який лежить проти кута 30°.Він дорівнює половині гіпотенузи.ВС=1/2АС=10:2=5 см
Объяснение:
Знайдем кут АВО.Кут ОВС=90°(як кут радіуса і дотичної).
Кут ОВС=кут АВС+кут АВО.Тому кут АВО=Кут ОВС-кут АВС=90°-70°=20°
Кут АВО=куту ВАО,як кути при основі рівнобедренного трикутника ΔАОВ.Тому кут АОВ=180°-2*кут АВО=180°-2*20°=180°-40°=140°
№2
Проведем додатково радіус ОВ.ΔАОВ- рівнобедренний,з основою ВС.Кути при основі рівні ,тому кут ВОС=180°-кутОСВ*2= 180°-60°*2=60°.
Кут ВОС є зовнішним для рівнобедренного ΔАОВ,
тому кут А+кут АВО= куту ВОС.Але кут А=кут АВО(як кути при основі).
кут А= кут ВОС:2=60°:2=30° .
Отже ΔАВС-прямокутний,де ВС-катет ,який лежить проти кута 30°.Він дорівнює половині гіпотенузи.ВС=1/2АС=10:2=5 см
Пусть гипотенуза - х
Тогда первый катет - х-1
Второй катет - (х-1)-7
Т. к треугольник прямоугольный, то используем теорему Пифагора
c²=a²+b² - общий вид
x²=(x-1)²+(x-8)²
x²=x²-2x+1+x²-16x+64
x²-x²-x²=-18x+65
-x²+18x-65=0
D=324-4(-1)(-65)=64
x1=-18+8/-2=5 см
х2=-18-8/-2=18 см
Либо 5 либо 18