В ортонормированном базисе заданы векторы а=(2; -3;1) b=(-1;2;0). Найти вектор с, перпендикулярный векторам а и b, длина которого равна единице.
Находим вектор d, перпендикулярный двум заданным с векторного произведения.
I j k| I j
2 -3 1| 2 -3
-1 2 0| -1 2 = 0i – 1j + 4k – 0j – 2i – 3k = -2i – 1j + 1k.
Вектор d = (-2; -1; 1), его модуль равен √((-2)² + (-1)² + 1²) = √6.
Вектор «с» с единичной длиной получим из вектора d, разделив его на его же модуль.
c = ((-2/√6); (-1/√6); (1/√6)).
Объяснение:
Дано:
Отрезки АС и ВК пересекаются в точке О,
АО = ОС,
ВО = ОК.
Доказать что треугольник АОК равен треугольнику ВОС.
Доказательство:
1) Рассмотрим треугольник АОК и ВОС. У них АО = ОС, ВО = ОК, угол АОК = углу ВОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОК = ВОС. Значит АК = ВС;
2) Рассмотрим треугольник АОВ и КОС. У них АО = ОС, ВО = ОК, угол АОВ = углу КОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОВ = КОС. Значит АВ = КС;
3) Треугольник АВС = СКА по трем сторонам, так как АК = ВС, АВ = КС и ВК - общая. Доказано.