М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alenapanina00
alenapanina00
07.07.2020 08:22 •  Геометрия

7. Периметр
равнобедренного
треугольника равен
20 см. Его боковая
сторона в Два раза
больше основания.
Найдите стороны этого треугольника.​

👇
Ответ:
простоhhh
простоhhh
07.07.2020

Р=(2см + 20 см)•2этот будеть

4,4(77 оценок)
Открыть все ответы
Ответ:
cozycoat1
cozycoat1
07.07.2020

Для даної задачі треба скористатися властивостями катетів та їх проекцій на гіпотенузу в прямокутному трикутнику.

Перший б

Катет прямокутного трикутника — середнє пропорційне між гіпотенузою c і проекцією цього катета на гіпотенузу:

a^{2} = a_{c}c \Rightarrow a = \sqrt{a_{c}(a_{c}+ b_{c})} = \sqrt{6 \cdot (6 + 24)} = \sqrt{180} = 6\sqrt{5} см

b^{2} = b_{c}c \Rightarrow a = \sqrt{b_{c}(a_{c}+ b_{c})} = \sqrt{24 \cdot (6 + 24)} = \sqrt{720} = 12\sqrt{5} см

Площа S прямокутного трикутника знаходится як півдобуток його катетів:

S = \dfrac{a \cdot b}{2} = \dfrac{6\sqrt{5} \cdot 12\sqrt{5}}{2} = 180 см²

Другий б

Висота h_{c} прямокутного трикутника, що проведена до гіпотенузи c з вершини прямого кута, — середнє пропорційне між проекціями катетів на гіпотенузу:

h^{2}_{c} = a_{c}b_{c} \Rightarrow h_{c} = \sqrt{a_{c}b_{c}} = \sqrt{6 \cdot 24} = \sqrt{144} = 12 см

Площа S будь-якого трикутника знаходиться як півдобуток його сторони на висоту, що проведена до цієї сторони. У нашому випадку — це півдобуток гіпотенузи c і висоти h_{c}, що до неї проведена:

S = \dfrac{1}{2} \cdot c \cdot h_{c} = \dfrac{1}{2} \cdot (6 + 24) \cdot 12 = 30 \cdot 6 = 180 см²

Відповідь: 180 см².


Знайдіть площу прямокутного трикутника , якщо висота проведена до гіпотенузи ,поділяє її на відрізки
4,6(95 оценок)
Ответ:
valeevinsaf
valeevinsaf
07.07.2020

Т.к. АС диаметр, то вписанные углы АВС и АDC, которые на него опираются равны 180:2=90град.

Треугольники АВО и ADО  равносторонние, их стороны равны радиусу,  значит и углы равны 180:3=60град., следовательно углы BAO и DAO равны  60град., т.е. угол BAD равен 60·2=120град. Угол BСD=180-120=60град. (Сумма углов четырёхугольника равна 360град.)

Углы BCA и DCA равны по 30град. (90-60=30 свойство углов прямоугольного треугольника) и являются вписанными в окружность, следовательно дуги на которые они опираются AB и AD равны 30·2=60град.

Дуги BC и CD так же в 2 раза больше вписанных углов BAC и DAC, которые на них опираются, т.е. 60·2=120град.

ответ: Углы четырёхугольника ABCD равны  120; 90; 60; 90 град. Дуги АВ и CD - 60град., дуги BC CD по 120град. 

4,4(18 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ