Дана равнобедренная травеция ABCD. Угол В=120гр. т.к. трапеция равнобедренная, то угол С=тоже 120гр., а углы основания равны по (360-120-120):2=60 градусов.
Из угла В проведена прямая ВК, параллельная стороне СD. Меньшее основание ВС=16см. АК=12см.
Найти периметр АВСD.
Имеем параллельные прямые ВС и АD, ВК и СД. Угол СВК=углу ВКА как накрест лежащие. Угол СDК=углу ВКА=60гр., как соответственные углы => угол СВК=углу ВКА=60 гр.
т.к. угол АВС=120гр, а угол КВС=60гр, то угол АВК=120-60=60гр. => имеем треугольник АВК, у которого все углы равны 60 градусов => треугольник равносторонний => ВК=АВ=АК=12см
ВС=КD=16см (расстояние между параллельными прямыми)
АD=12+16=28см
Периметр=12+12+16+28=68см
Обозначим вписанный тр-к АВС, центр окружности О. Одна из сторон по условию АВ = 2√3.
Рассмотрим тр-к АВО. Угол при вершине О уг.АОВ = 120⁰, т.к любая сторона вписанного правильного треугольника стягивает дугу, градусная мера которой равна 1/3 от 360⁰, т.е. 120⁰.
В тр-ке АОВ из вершины О опустим на сторону АВ высоту ОД, она же является медианой и биссектрисой, поскольку тр-к АОВ равнобедренный.
Тогда АД = ВД =√3, а уг. АОД = 60⁰.
В прямоугольном тр-ке АОД гипотенуза ОА, являющаяся радиусом описанной окружности, равна ОА= АД/sin60⁰ = √3: (0,5√3) = 2
Длина окружности С = 2πR = 2·π·2 = 4π
ответ: С = 4π