Дано куб. Визнач, яка з названих у відповіді прямих перпендикулярна даній площині? Cube_01.png а) площині (BCC1) перпендикулярна AA1 BD BD1 AC1 B1C1 AC AB б) площині (ACC1) перпендикулярна AC1 AB BD BD1 AC B1C1 AA1 2. В якій ситуації проведена пряма, яка не знаходиться в площині названої фігури, перпендикулярна до площини цієї фігури? пряма проведена перпендикулярно бічним сторонам трапеції пряма проведена перпендикулярно катетам прямокутного трикутника пряма проведена перпендикулярно двом радіусам, які не утворюють діаметр кола пряма проведена перпендикулярно основі рівнобедреного трикутника пряма проведена перпендикулярно двом сторонам квадрата
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9
Так как треугольник прямоугольный, то <A (см.рисунок во вложении) = 90 - <C = 90 – 60 = 30 градусов. Как известно, в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Таким образом если этот катет, т.е. катет ВС обозначить Х, то гипотенуза т.е. сторона АС =2Х. По теореме Пифагора (АС)^2 = (AB)^2 + (BC)^2. Подставив в это уравнение принятые и известный отрезки имеем (2Х)² = 10² + X², или 4Х²= 10²+ X² или 3Х²= 100. Отсюда Х²= 100/3 и малый катет, т.е. Х = √(100\3) = 10/√3. Площадь прямоугольного треугольника равна половине произведения его катетов. Т.е. S = (АВ*ВС)/2 = 10*10/2√3 = 50/√3
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9