Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
1) Треугольник ABC равнобедренный, т.к. AC=CB. 2) Опустим высоту CN. Она будет являться и медианой, и биссектрисой => AN=NB. 3)Рассмотрим треугольник ACN. Угол N=90. CosA=AN/AC =>AN=AC*CosA=(25*корень из 21)*0,4=10*корень из 21. AN=NB=10*корень из 21. 4) По Теореме Пифагора находим CN. CN^2=AC^2-AN^2 CN^2=(25*корень из 21)^2-(10*корень из 21) CN^2=11025 CN=105. 5) Находим площадь треугольника ABC. S=AB*CN/2 S=(20*корень из 21)*105/2 S=1050*корень из 21 6) Так же площадь ABC можно найти так: S=AH*CB/2 AH=2S/CB AH=2*(1050*корень из 21)/25*корень из 21 AH=84
cd²=ad*db
cd²=144x²
cd=12x
12x=4.8
x=0.4
16*0.4=6.4= ad
9*0.4=3.6=db
Значит, АВ=10