Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.
Решение. На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.
AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны . Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.