Объем такого параллелепипеда равен произведению его трех измерений. одно из этих измерений равно 11см. пусть оставшиеся измерения равны x и y. тогда периметр параллелепипеда равен 4*x+4*y+4*11 =96см. или x+y=13 см. (1) х=13-y (2). площадь полной поверхности параллелепипеда: s=2*(11*x)+2*(11*y)+2*x*y=370 см². или 11*x+11*y+x*y=185 см². или 11(x+y)+x*y=185 см². подставим значение (1): 11*13+x*y=185 => x*y=42. подставим значение из (2): y²-13y+42=0. решаем это квадратное уравнение: y1=(13+√(169-168)/2 = 7см. => x1=6см y2=(13-1)/2=6см. => x2 =6см. тогда объем параллелепипеда равен 6*7*11=462см³. ответ: v=462см³.
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.