В основании цилиндра лежит круг. Площадь круга рассчитывается по формуле (1) Где r - это радиус окружности.
Поскольку по условиям задача S = 4, то найдем r (2)
Осевое сечение цилиндра - то прямоугольник, у которого одна из сторон - это диаметр основания цилиндра, а другая - высота цилиндра. Тогда площадь осевого сечения (3)
Отсюда (4)
Объем цилиндра рассчитывается по формуле (5)
Где S - площадь основания (площадь круга), а h - высота цилиндра.
Заменим в полученной формуле (5) h на r из формулы (4) и получим ()
Заменяем в полученной формуле (6) r на раcсчитанное ранее r (2) и получим
BC II AD; Пусть начало координат O в середине AD; Ось OX вдоль AD, ось OY -перпендикулярно (проходит через середины BC и EF), ось OZ вдоль OS; Плоскость SAF пересекает оси OX в точке A (0, -1, 0) OY в точке M (0, -√3, 0) и OZ в точке S (0, 0, √3); Координаты M и S очень легко вычислить, потому что OM = OS = OA*tg(60°) (треугольник ASD очевидно равносторонний). Уравнение плоскости SAF выглядит так - x - y/√3 + z/√3 = 1; откуда вектор, нормальный к этой плоскости N = (-√3, -1, 1) (или любой ему пропорциональный). Теперь надо найти угол между N и осью OX cos(Ф) = Nx/INI = -√(3/5); по сути это ответ, знак косинуса не важен, его надо просто отбросить (минус означает, что вектор N "смотрит налево", не более того, но можно выбрать и противоположный ему вектор в качестве нормального) Ф = arccos(√(3/5)); В задаче надо найти угол между BC и плоскостью SAF. Определение этого угла зависит от того, откуда и в какую сторону считать, но если выбрать ориентацию нормали и определить угол с плоскостью так, чтобы они оба были острые, то ясно, что угол с нормалью и угол с плоскостью вместе составляют 90°; отсюда нужный угол равен arcsin(√(3/5));
Выше ответ)
Объяснение:
Вроде так:)