а) 80°. б) 70°.
Объяснение:
По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
∠АСВ = 180° - 30° - 80° = 70°.
Значит искомый угол равен 70°.
Через точку М(1; —3) и начало координат О(0; 0) проводим прямую.
Вектор ОМ равен (1; -3).
Угловой коэффициент прямой ОМ равен -3/1 = -3.
Уравнение ОМ: у = -3х.
Точка пересечения этой прямой с заданными покажет взаимное положение точек М и О.
Подставим вместо "у" в каждое уравнение значение (-3х).
1) 2х—(-3х) + 5 = 0; 5х = -5, х= -1, значит, точки М и О справа, по одну сторону.
2) х —3*(-3х)у—5 = 0; 10х = 5, х=5 /10, значит, точки М и О по разные стороны.
3) 3х+2* (-3х)—1 = 0; -3х = 1, х= -1/3, значит, точки М и О справа, по одну сторону.
4) х—3*(-3х) + 2 = 0; 10х = -2 , х= -1/5, значит, точки М и О справа, по одну сторону.
5) 10х + 24*(-3х)+15 = 0. -62х = -15, х= 15/62 значит, точки М и О по разные стороны.
Задача 2.
1) Пусть квадрат имеет стороны АВ, ВС, ДС и АД, пусть АС пересекает ВД в точке О.
2) У квадрата диагонали равны, следовательно АС=ВД=18 м.
3) У квадрата диагонали точкой пересечения делятся пополам, тогда АО=ОС=ОД=ОВ=9 м.
4) У квадрата диагонали взаимно перпендикулярны, в таком случае рассмотрим треугольник АОВ - прямоугольный. АВ - гипотенуза и одновременно сторона квадрата, треугольник равнобедренный, т.к. катеты равны по 9 м.
АВ²=АО²+ОВ² (теорема Пифагора)
АВ²=81+81
АВ²=162
АВ=9√2 (это сторона квадрата).
Задача 1.
1) Пусть ромб имеет стороны АВ, ВС, ДС и АД, а высота СН.
2) Рассмотрим треугольник ВНС (прямоугольный)
ВС²=СН²+НВ² (теорема Пифагора)
НВ²=400-256
НВ²=144
НВ=12 м.
3) АН=АВ-НВ=20-12=8 м.
4) Рассмотрим треугольник АНС (прямоугольный)
АС²=АН²+НС²
АС²=64+256=320
АС=8√5
4) Рассмотрим треугольник АОД (прямоугольный, т.к. диагонали ромба взаимноперперндикулярны), учитывая, что АС пересекает ВД в точке О.
АО=8√5:2=4√5
АД²=АО²+ОД² (теорема Пифагора)
ОД²=400-80=320
ОД=8√5
5) ВД=2ОД (т.к. диагональ точкой пересечения делится пополам.
ВД=2*8√5=16√5