Будем считать, что у отрезков есть начальная и конечная точки, то есть направление. Теперь у нас направленные отрезки (векторы).
Если точки расположены последовательно A_C, то имеем вектор AC.
Если точки расположены последовательно C_A, то имеем вектор -AC.
AM =1/2 AB =1/2 (AC+CB)
CK =1/2 CD =1/2 (CB+BD)
AK =AC+CK =AM+MK
AC +1/2 CB +1/2 BD = 1/2 AC +1/2 CB +MK => MK =1/2 AC +1/2 BD
1) Точки расположены последовательно A_C, B_D
MK =1/2 (AC+BD) = |5+7|/2 =6
2) Точки расположены последовательно C_A, B_D
MK =1/2 (-AC+BD) = |-5+7|/2 =1
3) Точки расположены последовательно A_C, D_B
MK =1/2 (AC-BD) = |5-7|/2 =1
4) Точки расположены последовательно C_A, D_B
MK =1/2 (-AC-BD) = |-5-7|/2 =6
Объяснение:
оловине гипотенузы ВС (СН=1/2CD, СD=BC как стороны ромба). Используем свойство прямоугольного треугольника: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CBH=30°
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол С:
<C=90-<CBH=90-30=60°, что и требовалось доказать.
2. ВМ=АВ-AM, CL=BC-BL, DP=CD-CP, AQ=AD-DQ, но
АМ=BL=СР=DQ по условию, а АВ=BC=CD=AD как стороны квадрата. Значит
ВМ=CL=DP=AQ
Прямоугольные треугольники MAQ, LBM, PCL и QDP равны, таким образом, по двум сторонам и углу между ними (углы А, B, C, D - прямые, АМ=BL=СР=DQ по условию, ВМ=CL=DP=AQ как только что доказано). У равных треугольников равны и соответственные стороны MQ, LM, LP и PQ. Значит, MLPQ-квадрат.