Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
Он прямоугольный (BH - высота)
Найдём ∠BAH = 90° - ∠ABH = 90° - 40° = 50°
∠ABC = ∠ABH + ∠HBC = 40° + 10° = 50°
∠BAH = ∠ABC = 50° ⇒ ΔABC - равнобедренный.
Угол ∠BCH из ΔBCH = 90° - ∠HBC = 90° - 10° = 80°
CD - высота, проведённая к AB
AB в ΔABC является основанием ⇒ CD не только высота, но и биссектриса ⇒ ∠BCD = ∠DCA = 80°/2 = 40°
Рассмотрим ΔBOC.
∠BCD = ∠BCO = 40°
∠HBC = ∠OBC = 10°
Сумма углов треугольника равна 180° ⇒ ∠BOC + ∠OBC + ∠BCO = 180°
∠BOC + 40° + 10° = 180°
∠BOC = 180° - 50°
∠BOC = 130°