Сделаем рисунок.
Проведем диагонали основания и отрезок из вершины куба до центра нижнего основания,
который находится в точке пересечения диагоналей квадрата ( все грани куба - квадраты)
Обозначим вершины получившегося внутри куба треугольника А В С.
Пусть ребро куба равно а.
Тогда диагональ его основания равна а√2, а ее половина
АС= 0,5а√2
АВ²=ВС²-АС²
АВ=а
По т. Пифагора
а²=р²-(0,5а√2)²
а²=р²- 0,5а²
1,5а²= р²
а²=р²:1,5
а² - это площадь одной грани куба, а их у него 6.
S полная =6 а²=6*р²:1,5=4 р²
28 см
Объяснение:
R - середина MN по условию, значит если NR=2, то MN=2*2=4см.
Рассмотрим △MNQ. В нём RS - средняя линия, т.к. R - середина MN по условию, S - точка пересечения диагоналей, а точка пересечения диагоналей параллелограмма делит их пополам. Значит по свойству средней линии треугольника, RS ll MQ. Значит, продолжая отрезок RS до точки L пересечения с PQ мы получим параллелограмм MRLQ (по свойству, что в параллелограмме противоположные стороны попарно параллельны) => MQ=RL.
△MNQ=△PQN по свойству диагонали, значит и средние линии их равны, т.е. RS=SL. => MQ=2*RS=2*5=10 см
P=2*MN+2*MQ=2*4+2*10=28 см