mn - средняя линия
ab=cd=8
bc=6
mn = (bc+ad) / 2
уг. авс=уг. всd=120
уг. bad = уг. cda = 360-120-120=60
проведем высоту вн
рассмотри треугольник анв - прямоугольный
уг. в = 90-уг. = а=90-60=30
ан=0,5*ав=0,5*8=4 (свойство угла в 30 градусов в прямоугольном треугольнике)
проведем высоту cl
рассмотри треугольник cld - прямоугольный
уг. c = 90-уг. = d=90-60=30
dl=0,5*cd=0,5*8=4 (свойство угла в 30 градусов в прямоугольном треугольнике)
ad=ah+hl+ld
hl=bc=6
ad=4+6+4=14
mn = (6+14) / 2=20/0=10
ответ: a) 62°; б) 118°
Объяснение: Вопрос явно неполный - не указан второй из смежных углов. Правильно: Углы ABC и BCD – смежные, причем угол ABC равен 124 градуса. Найдите угол между перпендикуляром, проведенным из точки B к прямой AD и биссектрисой угла CBD.
* * *
Сумма смежных углов 180°, поэтому ∠СВD=180°- ∠ABC=180°-124°=56°.
Обозначим биссектрису угла СВD как ВМ. Биссектриса угла делит его пополам, поэтому ∠СВМ=∠DBM=56°:2=28°
У задачи 2 варианта решения.
а) Перпендикуляр ВК к прямой AD лежит в той же полуплоскости, что луч ВС. Тогда искомый угол КВМ=∠КВD-∠MBD=90°-28°=62°
б) Перпендикуляр ВК1 лежит во второй полуплоскости. Тогда искомый угол К1ВМ=∠K1BD+∠DBM=90°+28°=118°