Треугольник АВС равнобедренный с основанием АС. Высоту этого треугольника ВН найдем через площадь: h= 2S/а, где S - площадь, а - сторона, к которой проведена высота. ВН = 2*48/12 = 8 см. Боковые стороны АВ и ВС равны по Пифагору √(ВН²+АН²) = √(8²+6²) =10 см.
Опустим перпендикуляры из точек А, Н и С на плоскость β. Эти перпендикуляры АЕ, НD и СF равны расстоянию от прямой АС до плоскости β (5 см - дано) в силу параллельности плоскости β прямой АС.
Угол наклона боковой стороны АВ треугольника к плоскости β - это угол наклонной АВ к плоскости, равный углу между наклонной АВ и ее проекцией ВЕ на эту плоскость.
В прямоугольном треугольнике АВЕ гипотенуза AВ=10 см, а катет АЕ=5 см. Синус угла АВЕ равен отношению противолежащего катета к гипотенузе, то есть Sina = 5/10 = 1/2, а сам угол равен 30°.
Так как треугольники АВЕ и СВF равны по катету и гипотенузе, то и углы наклона сторон АВ и СВ к плоскости β равны.
ответ: искомый угол α = 30°.
В основании пирамиды лежит квадрат со стороной а, проекция бокового ребра на основания даст половину диагонали квадрата = 12*cos60 = 6 см. Диагональ квадрата
равна 12 см, отсюда сторона квадрата а = 12/√2 см.
Площадь основания a² = 144/2 = 72 см²
Боковая поверхность пирамиды равна площади 4х граней (треугольников) основание которых а, а высота равна апофеме H.
Высота пирамиды находится по боковому ребру h = 12*sin60 = 12*√3/2= 6√3
H=√[(a/2)²+h²] = √[(12/√2)²+(6√3)²] = √(72+12)=√84
s=a*H/2 = 12/√2 * √84/2 = 6√42
Полная поверхность S = 72 + 24√42 ≈ 227,5 см²
sinA = cosB
tgB = корень (1 - cosB в квадрате) / cosB = корень ( 1 - 1/10) / (1/корень10)=
= (3/корень10) / (1/корень10) =3