Каждое ребро тетраэдра равно MKRT равно 2. Е- середина ребра MT . Постройте сечения тетраэдра плоскостью, паралельной прямой PT и проходящие через точки K и Е . Вычислите периметер пространственного сечения
Вот смотри, если же все грани параллелепипеда ABCDA1B1C1D1 - квадраты, то это куб.
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в
Прямоугольная трапеция АВСД. АД делится пополам высотой ВН,следовательно,АН = НД. Угол А = 60 градусов,значит угол В равен 30 градусом(т.к. ВН перпендикуляр,то угол Н равен 90 градусов,а углы в треугольнике в сумме дают 180 градусов).Сторона лежащая напротив угол 30 градусов равен половине гипотинузы,значит АН равен 4(по условию большая боковая сторона равна 8,следовательно это сторона АВ). Треугольник равнобедренный и чтобы найти ВН воспользуемся теоремой Пифагора: ВН^2=АВ^2-АН^2=64-16= 48,значит ВН= корню из 48 или 4 корня из 3. Найдем площадь трапеции: СВ+АД/2*ВН=4+8/2*4 корня из 3=24 корня из 3. ответ: 24 корня из 3 см квадратных.
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в