Задача состоит из трех шагов.
Шаг первый. В основании треугольник со стороной 6√3 см и противолежащим углом 120°⇒ по следствию из теоремы синусов отношение этой стороны к синусу противолежащего угла равно двум радиусам описанной окружности 2*R
6√3/sin120°=2*R⇒R=6√3/(2sin120°)=6√3/(2sin60°)=6√3/(2√3/2)=6(cм)
Шаг второй. т.к. все боковые ребра пирамиды равны, то основание высоты пирамиды - центр описанной окружности радиуса 6см. которая равна расстоянию от вершины С до центра окружности и это расстояние - это проекция наклонной на плоскость основания. а угол наклона ребра к плоскости основания, равный 60°- это угол наклона ребра к его проекции, т.е. к радиусу описанной окружности.
Шаг третий. Чтобы найти искомую высоту пирамиды, коей является катет, лежащий против угла в 60°, в прямоугольном треугольнике, составленном из высоты - искомого катета ; известного катета -радиуса описанной окружности 6см, и наклонной пирамиды - гипотенузы, необходимо найти высоту. т.е. противолежащий углу в
60 ° , катет, по прилежащему катету 6см.
h/R=tg60°⇒h=R*tg60°=6*√3/cм/, здесь h- высота пирамиды, R -радиус описанной около основания пирамиды окружности.
Отвте 6√3 см
АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6
ответ: Из прямоугольного треугольника ABE найдем AB-гипотенузу
AB^2=AE^2+BE^2
AB^2=(4корень3)^2 + 16 =48+16 =64
AB=8
Если не ошибаюсь