Доказательство в объяснении.
Объяснение:
AE перпендикулярна СК, так как СК перпендикулярна BC (дано), а ВС параллельна AD.
CF перпендикулярна AК, так как АК перпендикулярна АВ (дано), а АВ параллельна СD). Следовательно, точка D - точка пересечения высот треугольника АКС.
В треугольнике АКС высота из вершины К также проходит через точку D, так как все высоты треугольника пересекаются в одной точке.
DM - перпендикулярна АС (дано), а так как из одной точки (D) на прямую (АС) можно опустить единственный перпендикуляр, следовательно точка К, принадлежащая перпендикуляру (высоте) к стороне АС, прохожящему через точку D, лежит на прямой MD, что и требовалось доказать.
Пусть ∠BAC = α (∠BAD = 2α). Проведём через С прямую, параллельную АВ. Пусть она пересекает AD в точке Х. Тогда ABCX - параллелограмм. Значит противоположные стороны равны: BC = AX. AD в 2 раза больше BC, которое равно AX, значит X - середина AD. ∠ACX = ∠CAB = α = ∠CAX, значит AX = CX = AB. При этом AB = CD, т. к. трапеция равнобокая, значит XD=DC=CX, т. е. ΔXDC - равносторонний. Значит ∠ADC = 60°, ∠DAB = ∠ADC, т. к. трапеция равнобокая, т. е. ∠DAB = 60°, ∠ABC = ∠BCD = 180°-60° = 120° по свойству трапеции
ответ: ∠ABC=∠BCD=120°, ∠CDA=∠DAB=60°
1. Дуга АВ окружности с центром в точке О равна 60º. Найти расстояние от точки А до радиуса ОВ, если радиус окружности равен 6 см.
Решение: Рассмотрим треугольник АВО, АО=ВО=6(т.к. обе прямые являются радиусом окружности) значит треугольник равнобедренный, т.к. угол АОВ=60º, значит углы при осноании равны=(180º-60º)/2=60º, из этого следует, что треугольник равносторонний, сторона АВ=6.
2.АВ и АС – хорды окружности. угол АВС=70º, дуга АВ=120º. Найдите градусную меру дуги АС.
Решение: из теоремы "Центральный угол всегда в два раза больше вписанного, опирающегося на ту же самую дугу." следует, что дуга АС=140º. Значит дуга СВ=360º-(120º+140º)=100º.