
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
8 см - сторона многоугольника;
6 - количество сторон многоугольника.
Объяснение:
Радиус окружности вписанной в многоугольник является перпендикуляром к сторонам данного многоугольника.
Найдем длину стороны многоугольника:
Если из центра окружности провести биссектрисы к углам многоугольника, то многоугольник будет разбит на равные равнобедренные треугольники.
Причем, длины сторон многоугольника равны проведенным биссектрисам (радиусу описанной окружности), т.к. R = 8 см и a = 8 см.
Т.е. многоугольник разбивается на равносторонние треугольники, у которых каждый угол равен 60°.
Найдем количество сторон многоугольника:
n = 360° : 60° = 6.
Проверим найденное количество сторон многоугольника через формулу:
Подставив в формулу величину радиуса описанной окружности и найденное количество сторон многоугольника, должна быть получена длина стороны многоугольника, т.е. 8 см.