ответ:дано АВС и А1В1С1
В=В1=90
А=А1
ВН перпенд АС
В1Н1 перпенд А1С1
ВН=В1Н1
доказать АВС=А1В1С1
док-во
очевидно, что углы с=с1
значит, треугольники подобны. Соответственно, подобны все величины, в том числе и соответствующие высоты. Но так как высоты равны, то коэфф. подобия равен 1 , соответственно все стороны подобны с коэфф. 1, т.е. равны. Отсюда, треугольники равны.
Можно докавзать чуть по-другому, но там дольше. Т.е. высоты разбивают на два треуг, потом в каждом треуг. сторона и углы равны, значит другие стороны равны. И т.д. и т.п. итог- треуг равны
Основание ABC, AB=4, ∠C=30°
H - центр описанной окружности.
AB/sinC =2AH (т синусов) => AH=4
Если боковые ребра пирамиды равны, то вершина падает в центр описанной окружности основания.
SH⊥(ABC)
SH=√(SA^2-AH^2) =3 (т Пифагора)
О - центр описанной сферы.
OABC - пирамида с равными боковыми ребрами, следовательно ее вершина также падает в центр H.
OH⊥(ABC)
S-H-O на одной прямой.
В плоскости ASO.
OS=OA, О на серединном перпендикуляре к SA.
M - середина SA, SM=5/2
△SOM~△SAH
SO/SA=SM/SH => SO/5=5/2*3 => SO=25/6
OH =SO-SH =25/6 -3 =7/6