Задание суммативного оценивания по дисциплине "Геометрия" за 2 четверти Задания суммативного оценивания по дисциплине "Геометрия" за 2 четверть
1. ребра треугольника равны соотношению 3:4: 5, его периметр равен 60 см. Найдите стенки треугольника, потолки которых являются средами стен этого треугольника.
[5] оценка
2.Найди меньшую стенку трапеции, если подошвы прямоугольной трапеции равны 12 см и 18 см, а угол наклона равен 450.
[5] оценка
3.найди среднюю линию трапеции, если меньшая подошва трапеции равна 4 см, а ее большая подошва на 4 см больше средней линии.
[5] оценка
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301