Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
По теореме Пифагора: х² = (x/2)² + (12√3)².
х² = x²/4 + 144 * 3.
х² - x²/4 = 432.
(4х²)/4 - x²/4 = 432.
(3х²)/4 = 432.
3х² = 432 * 4;
3х² = 1728;
х² = 1728/3 = 576.
х = √576 = 24.
ответ: сторона треугольника равна 24.
Объяснение: